Dynamic microscopic study of pre-equilibrium giant resonance excitation and fusion in the reactions $^{132}$Sn+$^{48}$Ca and $^{124}$Sn+$^{40}$Ca

Physics – Nuclear Physics – Nuclear Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9 pages, 9 figures

Scientific paper

10.1103/PhysRevC.85.034609

We study pre-equilibrium giant dipole resonance excitation and fusion in the neutron-rich system $^{132}$Sn+$^{48}$Ca at energies near the Coulomb barrier, and we compare photon yields and total fusion cross sections to those of the stable system $^{124}$Sn+$^{40}$Ca. The dynamic microscopic calculations are carried out on a three-dimensional lattice using both the Time-Dependent Hartree-Fock method and the Density Constrained TDHF method. We demonstrate that the peak of the GDR excitation spectrum occurs at a substantially lower energy than expected for an equilibrated system, thus reflecting the very large prolate elongation of the dinuclear complex during the early stages of fusion. Our theoretical fusion cross-sections for both systems agree reasonably well with recent data measured at HRIBF.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Dynamic microscopic study of pre-equilibrium giant resonance excitation and fusion in the reactions $^{132}$Sn+$^{48}$Ca and $^{124}$Sn+$^{40}$Ca does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Dynamic microscopic study of pre-equilibrium giant resonance excitation and fusion in the reactions $^{132}$Sn+$^{48}$Ca and $^{124}$Sn+$^{40}$Ca, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamic microscopic study of pre-equilibrium giant resonance excitation and fusion in the reactions $^{132}$Sn+$^{48}$Ca and $^{124}$Sn+$^{40}$Ca will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-683683

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.