Anomalous Scaling and Fusion Rules in Hydrodynamic Turbulence

Nonlinear Sciences – Chaotic Dynamics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

19 pages, REVTeX-3

Scientific paper

It is shown that statistical properties of developed hydrodynamic turbulence are characterized by an infinite set of independent anomalous exponents which describes the scaling behavior of hydrodynamic fields constructed from the second and larger powers of the velocity derivatives. A physical mechanism responsible for anomalous scaling, ``telescopic multi-step eddy interaction", is discovered and investigated. The essence of this mechanism is the existence of a very large number $(R/\eta)^{\Delta_j}\gg 1$ of channels of interaction of large eddies of scale $R$ in the inertial interval with eddies of viscous scale $\eta$ via a set of eddies of all intermediate scales between $R$ and $\eta$. The description of this mechanism based on the NS equation in the quasi Lagrangian representation is presented. In the diagrammatic expansion of the correlation function of the energy dissipation field $K_ {\varepsilon \varepsilon}(R)$, we have found an infinite series of logarithmically diverging diagrams. Their summation leads to a renormalization of the normal Kolmogorov-41 dimensions. For a description of the scaling of various hydrodynamic fields an infinite set of primary fields $O_n$ with independent scaling exponents $\Delta_n$ was introduced. We have proposed a symmetry classification of the fields $O_n$ enabling one to predict relations between scaling the behavior of different correlation functions.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Anomalous Scaling and Fusion Rules in Hydrodynamic Turbulence does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Anomalous Scaling and Fusion Rules in Hydrodynamic Turbulence, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Anomalous Scaling and Fusion Rules in Hydrodynamic Turbulence will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-677784

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.