Hot B violation, the lattice, and hard thermal loops

Physics – High Energy Physics – High Energy Physics - Phenomenology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

43 pages, Latex, uses revtex, epsf macro packages

Scientific paper

10.1103/PhysRevD.55.7781

It has recently been argued that the rate per unit volume of baryon number violation (topological transitions) in the hot, symmetric phase of electroweak theory is of the form $\eta \alpha_w^5 T^4$ in the weak-coupling limit, where $\eta$ is a non-perturbative numerical coefficient. Over the past several years, there have been attempts to extract the rate of baryon number violation from real-time simulations of classical thermal field theory on a spatial lattice. Unfortunately, the coefficient $\eta$ will not be the same for classical lattice theories and the real quantum theory. However, by analyzing the appropriate effective theory on the lattice using the method of hard thermal loops, I show that the only obstruction to precisely relating the rates in the real and lattice theories is the fact that the long-distance physics on the lattice is not rotationally invariant. (This is unlike Euclidean-time measurements, where rotational invariance is always recovered in the continuum limit.) I then propose how this violation of rotational invariance can be eliminated - and the real B violation rate measured - by choosing an appropriate lattice Hamiltonian. I also propose a rough measure of the systematic error to be expected from using simpler, unimproved Hamiltonians. As a byproduct of my investigation, the plasma frequency and Debye mass are computed for classical thermal field theory on the lattice.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Hot B violation, the lattice, and hard thermal loops does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Hot B violation, the lattice, and hard thermal loops, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hot B violation, the lattice, and hard thermal loops will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-672681

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.