Orbit spaces of reflection groups with 2, 3, and 4 basic polynomial invariants

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

42 pages, latex, accepted by Journal of Physics A, Mathematical and General

Scientific paper

10.1088/0305-4470/29/1/019

Covariant or invariant functions under a compact linear group can be expressed in terms of functions defined in the orbit space of the group. The semialgebraic relations defining the orbit spaces of all finite coregular real linear groups with at most 4 basic invariants are determined. For each group $G$ acting in $\real^n$, the results are obtained through the computation of a metric matrix $\widehat P(p)$, which is defined only in terms of the scalar products between the gradients of a set of basic polynomial invariants $p_1(x),\dots p_q(x),\x\in\real^n$ of $G$; the semi-positivity conditions $\widehat P(p)\ge 0$ are known to determine all the equalities and inequalities defining the orbit space $\real^n/G$ of $G$ as a semi-algebraic variety in the space $\real^q$ spanned by the variables $p_1,\dots ,p_q$. In a recent paper, the $\widehat P$-matrices, for $q\le 4$, have been determined in an alternative way, as solutions of a universal differential equation;the present paper yields a partial, but significant, check on the correctness and completeness of these solutions. Our results can be widely exploited,e.g. in the determination of patterns of spontaneous symmetry breaking, in the analysis of structural phase transitions (Landau's theory),in covariant bifurcation theory,in crystal field theory and in solid state theory where symmetry adapted functions are used.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Orbit spaces of reflection groups with 2, 3, and 4 basic polynomial invariants does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Orbit spaces of reflection groups with 2, 3, and 4 basic polynomial invariants, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Orbit spaces of reflection groups with 2, 3, and 4 basic polynomial invariants will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-666327

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.