Resolving LSND anomaly by neutrino diffraction

Physics – High Energy Physics – High Energy Physics - Phenomenology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14pages, 5figures, Sec.1 and Sec.4 were revised partly. Eq.6 was added

Scientific paper

In the charged pion decay, a neutrino is produced in pair with a charged lepton and they have the same production rate. In this paper we show that neutrinos have their own space-time correlations in a wide area and are detected in a different manner from charged leptons, owing to extremely small mass. The neutrino flux reveals a unique interference effect in the form of diffraction of non-stationary waves. The diffraction component of the flux shows a slow position-dependence and leads to an electron neutrino at short base-line regions. The electron neutrino flux at short distances is attributed to the neutrino diffraction and the one at long distances is to the normal flavor oscillation. The former depends upon the average mass-squared $\bar m^2_\nu$ and the latter depends upon the mass-squared difference $\delta m^2_\nu$. The LSND and the two neutrino experiment (TWN) measure $\bar m^2_\nu$ and the other experiments measure $\delta m^2_\nu$. Hence they are consistent with each other. The neutrino diffraction would supply valuable information on the absolute neutrino mass.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Resolving LSND anomaly by neutrino diffraction does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Resolving LSND anomaly by neutrino diffraction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Resolving LSND anomaly by neutrino diffraction will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-569960

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.