Nonlinear Sciences – Chaotic Dynamics
Scientific paper
1994-11-03
Nonlinear Sciences
Chaotic Dynamics
11 pages, uuencoded compressed PostScript
Scientific paper
10.1103/PhysRevE.50.1653
We discuss the bifurcation structure of homoclinic orbits in bimodal one dimensional maps. The universal structure of these bifurcations with singular bifurcation points and the web of bifurcation lines through the parameter space are described. The bifurcations depend on two parameters (codimension 2 bifurcations). We find the bifurcation lines exactly in a symbolic dynamics parameter plane and numerically in the parameter planes of a polynomial map and a piecewise linear map.
No associations
LandOfFree
Bifurcations of homoclinic orbits in bimodal maps does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Bifurcations of homoclinic orbits in bimodal maps, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bifurcations of homoclinic orbits in bimodal maps will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-569857