Physics – Quantum Physics
Scientific paper
2000-08-03
J. Phys. A34, 6689-6722 (2001)
Physics
Quantum Physics
31 latex pages, including 9 figures in ps; ver. 4: minor corrections
Scientific paper
10.1088/0305-4470/34/34/311
Topological and geometrical properties of the set of mixed quantum states in the N-dimensional Hilbert space are analysed. Assuming that the corresponding classical dynamics takes place on the sphere we use the vector SU(2) coherent states and the generalised Husimi distributions to define the Monge distance between arbitrary two density matrices. The Monge metric has a simple semiclassical interpretation and induces a non-trivial geometry. Among all pure states the distance from the maximally mixed state \rho_*, proportional to the identity matrix, admits the largest value for the coherent states, while the delocalized 'chaotic' states are close to \rho_*. This contrasts the geometries induced by the standard (trace, Hilbert-Schmidt or Bures) metrics, where the distance from \rho_* is the same for all pure states. We discuss possible physical consequences including unitary time evolution and the process of decoherence. We introduce also a simplified Monge metric, defined in the space of pure quantum states, and more suitable for numerical computation.
Slomczynski Wojciech
Zyczkowski Karol
No associations
LandOfFree
Monge Metric on the Sphere and Geometry of Quantum States does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Monge Metric on the Sphere and Geometry of Quantum States, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monge Metric on the Sphere and Geometry of Quantum States will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-560314