New features of scattering from a one-dimensional non-Hermitian (complex) potential

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10 pages, one Table, one Figure, important changes, appeared as an FTC (J. Phys. A: Math. Theor. 45(2012) 032004)

Scientific paper

For complex one-dimensional potentials, we propose the asymmetry of both reflectivity and transmitivity under time-reversal: $R(-k)\ne R(k)$ and $T(-k) \ne T(k)$, unless the potentials are real or PT-symmetric. For complex PT-symmetric scattering potentials, we propose that $R_{left}(-k)=R_{right}(k)$ and $T(-k)=T(k)$. So far, the spectral singularities (SS) of a one-dimensional non-Hermitian scattering potential are witnessed/conjectured to be at most one. We present a new non-Hermitian parametrization of Scarf II potential to reveal its four new features. Firstly, it displays the just acclaimed (in)variances. Secondly, it can support two spectral singularities at two pre-assigned real energies ($E_*=\alpha^2,\beta^2$) either in $T(k)$ or in $T(-k)$, when $\alpha\beta>0$. Thirdly, when $\alpha \beta <0$ it possesses one SS in $T(k)$ and the other in $T(-k)$. Fourthly, when the potential becomes PT-symmetric $[(\alpha+\beta)=0]$, we get $T(k)=T(-k)$, it possesses a unique SS at $E=\alpha^2$ in both $T(-k)$ and $T(k)$. Lastly, for completeness, when $\alpha=i\gamma$ and $\beta=i\delta$, there are no SS, instead we get two negative energies $-\gamma^2$ and $-\delta^2$ of the complex PT-symmetric Scarf II belonging to the two well-known branches of discrete bound state eigenvalues and no spectral singularity exists in this case. We find them as $E^{+}_{M}=-(\gamma-M)^2$ and $E^{-}_{N}=-(\delta-N)^2$; $M(N)=0,1,2,...$ with $0 \le M (N)< \gamma (\delta)$. {PACS: 03.65.Nk,11.30.Er,42.25.Bs}

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

New features of scattering from a one-dimensional non-Hermitian (complex) potential does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with New features of scattering from a one-dimensional non-Hermitian (complex) potential, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and New features of scattering from a one-dimensional non-Hermitian (complex) potential will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-551598

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.