Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
2003-06-18
JHEP 0311:054,2003
Physics
High Energy Physics
High Energy Physics - Theory
28 pages, JHEP style
Scientific paper
10.1088/1126-6708/2003/11/054
Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local Lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of $\hat{sl}(n) (n=2,3)$ is presented explicitly.
No associations
LandOfFree
Higher Grading Conformal Affine Toda Teory and (Generalized) Sine-Gordon/Massive Thirring Duality does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Higher Grading Conformal Affine Toda Teory and (Generalized) Sine-Gordon/Massive Thirring Duality, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Higher Grading Conformal Affine Toda Teory and (Generalized) Sine-Gordon/Massive Thirring Duality will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-51090