Physics – Quantum Physics
Scientific paper
2010-04-20
Int. J. Quantum Information, 8, 535-640 (2010)
Physics
Quantum Physics
Review article with 106 pages, 3 figures, 4 tables, 196 references
Scientific paper
Mutually unbiased bases for quantum degrees of freedom are central to all theoretical investigations and practical exploitations of complementary properties. Much is known about mutually unbiased bases, but there are also a fair number of important questions that have not been answered in full as yet. In particular, one can find maximal sets of ${N+1}$ mutually unbiased bases in Hilbert spaces of prime-power dimension ${N=p^\m}$, with $p$ prime and $\m$ a positive integer, and there is a continuum of mutually unbiased bases for a continuous degree of freedom, such as motion along a line. But not a single example of a maximal set is known if the dimension is another composite number ($N=6,10,12,...$). In this review, we present a unified approach in which the basis states are labeled by numbers ${0,1,2,...,N-1}$ that are both elements of a Galois field and ordinary integers. This dual nature permits a compact systematic construction of maximal sets of mutually unbiased bases when they are known to exist but throws no light on the open existence problem in other cases. We show how to use the thus constructed mutually unbiased bases in quantum-informatics applications, including dense coding, teleportation, entanglement swapping, covariant cloning, and state tomography, all of which rely on an explicit set of maximally entangled states (generalizations of the familiar two--q-bit Bell states) that are related to the mutually unbiased bases. There is a link to the mathematics of finite affine planes. We also exploit the one-to-one correspondence between unbiased bases and the complex Hadamard matrices that turn the bases into each other. The ultimate hope, not yet fulfilled, is that open questions about mutually unbiased bases can be related to open questions about Hadamard matrices or affine planes, in particular the ...[rest deleted]
Bengtsson Ingemar
Durt Thomas
Englert Berthold-Georg
Zyczkowski Karol
No associations
LandOfFree
On mutually unbiased bases does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On mutually unbiased bases, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On mutually unbiased bases will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-471892