Nonlocal quantum information in bipartite quantum error correction

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14 pages, 4 figures

Scientific paper

10.1007/s11128-010-0175-0

We show how to convert an arbitrary stabilizer code into a bipartite quantum code. A bipartite quantum code is one that involves two senders and one receiver. The two senders exploit both nonlocal and local quantum resources to encode quantum information with local encoding circuits. They transmit their encoded quantum data to a single receiver who then decodes the transmitted quantum information. The nonlocal resources in a bipartite code are ebits and nonlocal information qubits and the local resources are ancillas and local information qubits. The technique of bipartite quantum error correction is useful in both the quantum communication scenario described above and in fault-tolerant quantum computation. It has application in fault-tolerant quantum computation because we can prepare nonlocal resources offline and exploit local encoding circuits. In particular, we derive an encoding circuit for a bipartite version of the Steane code that is local and additionally requires only nearest-neighbor interactions. We have simulated this encoding in the CNOT extended rectangle with a publicly available fault-tolerant simulation software. The result is that there is an improvement in the "pseudothreshold" with respect to the baseline Steane code, under the assumption that quantum memory errors occur less frequently than quantum gate errors.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Nonlocal quantum information in bipartite quantum error correction does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Nonlocal quantum information in bipartite quantum error correction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonlocal quantum information in bipartite quantum error correction will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-467785

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.