Physics – High Energy Physics – High Energy Physics - Phenomenology
Scientific paper
2006-06-13
JHEP 0701:053,2007
Physics
High Energy Physics
High Energy Physics - Phenomenology
18 pages, 3 figures, 2 tables, revised version, to appear in JHEP, Fig. 1 extended, Formula added, minor changes, results unch
Scientific paper
10.1088/1126-6708/2007/01/053
We discuss several new ideas for reactor neutrino oscillation experiments with a Large Liquid Scintillator Detector. We consider two different scenarios for a measurement of the small mixing angle $\theta_{13}$ with a mobile $\bar{\nu}_e$ source: a nuclear-powered ship, such as a submarine or an icebreaker, and a land-based scenario with a mobile reactor. The former setup can achieve a sensitivity to $\sin^2 2\theta_{13} \lesssim 0.003$ at the 90% confidence level, while the latter performs only slightly better than Double Chooz. Furthermore, we study the precision that can be achieved for the solar parameters, $\sin^2 2\theta_{12}$ and $\Delta m_{21}^2$, with a mobile reactor and with a conventional power station. With the mobile reactor, a precision slightly better than from current global fit data is possible, while with a power reactor, the accuracy can be reduced to less than 1%. Such a precision is crucial for testing theoretical models, e.g. quark-lepton complementarity.
Kopp Joachim
Lindner Manfred
Merle Alexander
Rolinec Mark
No associations
LandOfFree
Reactor Neutrino Experiments with a Large Liquid Scintillator Detector does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Reactor Neutrino Experiments with a Large Liquid Scintillator Detector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Reactor Neutrino Experiments with a Large Liquid Scintillator Detector will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-46026