Physics – Mathematical Physics
Scientific paper
2005-06-02
Asympotic Analysis 55, 1-2 (2007) 103-123
Physics
Mathematical Physics
Scientific paper
We consider the multidimensional Newton-Einstein equation in static electromagnetic field $$\eqalign{\dot p = F(x,\dot x), F(x,\dot x)=-\nabla V(x)+{1\over c}B(x)\dot x,\cr p={\dot x \over \sqrt{1-{|\dot x|^2 \over c^2}}}, \dot p={dp\over dt}, \dot x={dx\over dt}, x\in C^1(\R,\R^d),}\eqno{(*)}$$ where $V \in C^2(\R^d,\R),$ $B(x)$ is the $d\times d$ real antisymmetric matrix with elements $B\_{i,k}(x)={\pa\over \pa x\_i}\A\_k(x)-{\pa\over \pa x\_k}\A\_i(x)$, and $|\pa^j\_x\A\_i(x)|+|\pa^j\_x V(x)| \le \beta\_{|j|}(1+|x|)^{-(\alpha+|j|)}$ for $x\in \R^d,$ $|j| \le 2,$ $i=1..d$ and some $\alpha > 1$. We give estimates and asymptotics for scattering solutions and scattering data for the equation $(*)$ for the case of small angle scattering. We show that at high energies the velocity valued component of the scattering operator uniquely determines the X-ray transforms $P\nabla V$ and $PB\_{i,k}$ for $i,k=1..d,$ $i\neq k.$ Applying results on inversion of the X-ray transform $P$ we obtain that for $d\ge 2$ the velocity valued component of the scattering operator at high energies uniquely determines $(V,B)$. In addition we show that our high energy asymptotics found for the configuration valued component of the scattering operator doesn't determine uniquely $V$ when $d\ge 2$ and $B$ when $d=2$ but that it uniquely determines $B$ when $d\ge 3.$
No associations
LandOfFree
On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On inverse scattering in electromagnetic field in classical relativistic mechanics at high energies will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-435236