Physics – High Energy Physics – High Energy Physics - Phenomenology
Scientific paper
2010-12-28
Annals Phys.326:1998-2038,2011
Physics
High Energy Physics
High Energy Physics - Phenomenology
56 pages, 11 figures; minor corrections, version published in Annals of Physics
Scientific paper
10.1016/j.aop.2011.02.002
Thermal leptogenesis explains the observed matter-antimatter asymmetry of the universe in terms of neutrino masses, consistent with neutrino oscillation experiments. We present a full quantum mechanical calculation of the generated lepton asymmetry based on Kadanoff-Baym equations. Origin of the asymmetry is the departure from equilibrium of the statistical propagator of the heavy Majorana neutrino, together with CP violating couplings. The lepton asymmetry is calculated directly in terms of Green's functions without referring to "number densities". Compared to Boltzmann and quantum Boltzmann equations, the crucial difference are memory effects, rapid oscillations much faster than the heavy neutrino equilibration time. These oscillations strongly suppress the generated lepton asymmetry, unless the standard model gauge interactions, which cause thermal damping, are properly taken into account. We find that these damping effects essentially compensate the enhancement due to quantum statistical factors, so that finally the conventional Boltzmann equations again provide rather accurate predictions for the lepton asymmetry.
Anisimov Alexey
Buchmüller Wilfried
Drewes Marco
Mendizabal Sebastian
No associations
LandOfFree
Quantum Leptogenesis I does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantum Leptogenesis I, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum Leptogenesis I will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-428482