Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1992-09-17
Int.J.Mod.Phys. A8 (1993) 3909-3932
Physics
High Energy Physics
High Energy Physics - Theory
27pages
Scientific paper
We study the Turaev-Viro invariant as the Euclidean Chern-Simons-Witten gravity partition function with positive cosmological constant. After explaining why it can be identified as the partition function of 3-dimensional gravity, we show that the initial data of the TV invariant can be constructed from the duality data of a certain class of rational conformal field theories, and that, in particular, the original Turaev-Viro's initial data is associated with the $A_{k+1}$ modular invariant WZW model. As a corollary we then show that the partition function $Z(M)$ is bounded from above by $Z((S^2\times S^1)^{\sharp g}) =(S_{00})^{-2g+2}\sim \Lambda^{-\frac{3g-3}{2}}$, where $g$ is the smallest genus of handlebodies with which $M$ can be presented by Hegaard splitting. $Z(M)$ is generically very large near $\Lambda\sim +0$if $M$ is neither $S^3$ nor a lens space, and many-wormholeconfigurations dominate near $\Lambda\sim +0$ in the sense that $Z(M)$ generically tends to diverge faster as the ``number of wormholes'' $g$ becomes larger.
No associations
LandOfFree
Rational Conformal Field Theory and Multi-Wormhole Partition Function in 3-dimensional Gravity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Rational Conformal Field Theory and Multi-Wormhole Partition Function in 3-dimensional Gravity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rational Conformal Field Theory and Multi-Wormhole Partition Function in 3-dimensional Gravity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-405994