How the Jones Polynomial Gives Rise to Physical States of Quantum General Relativity

Physics – High Energy Physics – High Energy Physics - Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7pp

Scientific paper

10.1007/BF00756923

Solutions to both the diffeomorphism and the hamiltonian constraint of quantum gravity have been found in the loop representation, which is based on Ashtekar's new variables. While the diffeomorphism constraint is easily solved by considering loop functionals which are knot invariants, there remains the puzzle why several of the known knot invariants are also solutions to the hamiltonian constraint. We show how the Jones polynomial gives rise to an infinite set of solutions to all the constraints of quantum gravity thereby illuminating the structure of the space of solutions and suggesting the existance of a deep connection between quantum gravity and knot theory at a dynamical level.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

How the Jones Polynomial Gives Rise to Physical States of Quantum General Relativity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with How the Jones Polynomial Gives Rise to Physical States of Quantum General Relativity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and How the Jones Polynomial Gives Rise to Physical States of Quantum General Relativity will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-399704

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.