Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1993-02-02
Commun.Math.Phys. 160 (1994) 317-332
Physics
High Energy Physics
High Energy Physics - Theory
21 pages, THU-93/05, ITFA-93/2
Scientific paper
10.1007/BF02103279
By quantizing the generalized Drinfeld-Sokolov reduction scheme for arbitrary $sl_2$ embeddings we show that a large set $\cal W$ of quantum W algebras can be viewed as (BRST) cohomologies of affine Lie algebras. The set $\cal W$ contains many known $W$ algebras such as $W_N$ and $W_3^{(2)}$. Our formalism yields a completely algorithmic method for calculating the W algebra generators and their operator product expansions, replacing the cumbersome construction of W algebras as commutants of screening operators. By generalizing and quantizing the Miura transformation we show that any $W$ algebra in $\cal W$ can be embedded into the universal enveloping algebra of a semisimple affine Lie algebra which is, up to shifts in level, isomorphic to a subalgebra of the original affine algebra. Therefore {\em any} realization of this semisimple affine Lie algebra leads to a realization of the $W$ algebra. In particular, one obtains in this way a general and explicit method for constructing the free field realizations and Fock resolutions for all algebras in $\cal W$. Some examples are explicitly worked out.
Boer Jan de
Tjin Tjark
No associations
LandOfFree
The Relation between Quantum W algebras and Lie algebras does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Relation between Quantum W algebras and Lie algebras, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Relation between Quantum W algebras and Lie algebras will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-309136