Physics – Mathematical Physics
Scientific paper
2011-10-02
Physics
Mathematical Physics
12 pages, Proceedings of DPF2011, Brown University, Providence, R.I., Aug. 9-13, 2011. Version 2 adds references, corrects the
Scientific paper
Higher-order diagrams required for radiative corrections to mixed electroweak and QCD processes at the LHC and anticipated future colliders will require numerically stable representations of the associated Feynman diagrams. The hypergeometric representation supplies an analytic framework that is useful for deriving such stable representations. We discuss the reduction of Feynman diagrams to master integrals, and compare integration-by-parts methods to differential reduction of hypergeometric functions. We describe the problem of constructing higher-order terms in the epsilon expansion, and characterize the functions generated in such expansions.
Bytev Vladimir V.
Kalmykov Mikhail Yu.
Kniehl Bernd A.
Ward B. F. L.
Yost Sarah Anne
No associations
LandOfFree
The Epsilon Expansion of Feynman Diagrams via Hypergeometric Functions and Differential Reduction does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Epsilon Expansion of Feynman Diagrams via Hypergeometric Functions and Differential Reduction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Epsilon Expansion of Feynman Diagrams via Hypergeometric Functions and Differential Reduction will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-285810