VELOX: A new VLF/ELF receiver in ANtarctica for the Global Geospace Science mission

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

22

Antarctic Regions, Earth-Ionosphere Waveguide, Electromagnetic Noise, Extremely Low Frequencies, Noise Measurement, Very Low Frequencies, Diurnal Variations, Experiment Design, Flux Density, Polarization (Waves), Signal Fading, Spectrograms

Scientific paper

VELOX (VLF/ELF Logger Experiment), a new facility for systematically studying the characteristics of magnetospherically generated ELF/VLF radio noise received at a high-latitude ground station (Halley, Antarctica, 76 deg S, 26 deg W, L=4.3), measures continuously at 1 s resoulution the absolute power (peak, mean, and minimum), arrival azimuth, and polarization ellipticity in 8 logarithmically spaced frequency bands ranging from 500 Hz to 9.3 kHz. All filtering etc. is done in real time using Digital Signal Processing (DSP) techniques. Key parameters (1 kHz and 3 kHz power channels only, at 1-minute intervals) for each day are extracted and regularly transferred to the Global Geospace Study Central Data Handling Facility. Data from the first year of operation (1992) show that, whilst the upper channels (6 kHz and 9.3 kHz) are dominated by thunderstorm (spheric) noise, which is strongest at night and repeatable from day to day, magnetospheric chorus and hiss emissions are more important in the 1-4 kHz range of high attenuation in the Earth-ionosphere waveguide. They are highly variable in intensity from below system noise level (15-20 dB above the reference level 10(exp -33) T(exp 2)/Hz) up to a maximum of 60-70 dB. Three classes of event are usually observed during specific local time sectors: substorm-related chorus events in the midnight-dawn sector, dawn chorus, and hiss-like events in the afternoon; all may occasionally be completely absent on quiet days. The substorm chorus events are shorter (typically 10-20 minutes) and more narrow-band than dawn chorus. Both upper and lower cut-off frequencies rise rapidly (approximately 100 Hz/min), consistent wih the energy dispersion of resonant electrons as they drift eastward from injection near midnight, and with the inward dirft, driven by substorm-enhanced electric fields, of whistler ducts which support propagation to the ground. Afternoon emission events are often punctuated by sudden deep fading, to noise level within 1-2 minutes, ususally followed by complete recovery after a few minutes. All frequencies in the emission band are affected simultaneously. The explanation for this effect is unknown, though it could be a cut-off of propagation through the ionosphere to the ground by irregularities or gradients tilting the wave-normals out of the transmission cone. A similar system to VELOX will be deployed on a network of Automatic Geophysical Observatories extending to higher latitudes, south of Halley.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

VELOX: A new VLF/ELF receiver in ANtarctica for the Global Geospace Science mission does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with VELOX: A new VLF/ELF receiver in ANtarctica for the Global Geospace Science mission, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and VELOX: A new VLF/ELF receiver in ANtarctica for the Global Geospace Science mission will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1829894

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.