Computer Science – Sound
Scientific paper
Sep 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008epsc.conf..621l&link_type=abstract
European Planetary Science Congress 2008, Proceedings of the conference held 21-25 September, 2008 in Münster, Germany. Online a
Computer Science
Sound
Scientific paper
A mission to return to Titan after Cassini- Huygens is a high priority for exploration, as recommended by the 2007 NASA Science Plan, the 2006 Solar System Exploration Roadmap, the ESA Cosmic Visions competition, and the 2003 National Research Council of the National Academies Solar System report on New Frontiers in the Solar System: An Integrated Exploration Strategy (aka Decadal Survey). As anticipated by the 2003 Decadal Survey, recent Cassini-Huygens discoveries have further revolutionized our understanding of the Titan system and its potential for harbouring the "ingredients" necessary for life. These discoveries reveal that Titan is rich in organics, contains a vast subsurface ocean of liquid water, surface repositories of methane, ethane and other organic compounds, and has the energy sources necessary to drive chemical evolution. With these recent discoveries, interest in Titan as the next scientific target in the outer Solar System is strongly reinforced. Cassini's discovery of active geysers on Enceladus adds a second target in the Saturn system for such a mission, one that is synergistic with Titan in understanding planetary evolution and in adding a potential abode in the Saturn system for life as we know it. One of the mission concepts would consist of a NASA-provided 1600 kg orbiter with ESA-provided 180 kg Mare Explorer and 588 kg Montgolfière Balloon. The mission would launch on an Atlas 551 in the 2018-2020 timeframe, travelling to Saturn on an SEP gravity assist trajectory, and reaching Saturn approximately 8.5 years later. The SEP stage would be released approximately 5.8 years after launch well in advance of Saturn approach. The main engine would then place the flight system into orbit around Saturn for a tour phase lasting approximately 2 years. During the first Titan flyby (~100 days after SOI), the orbiter would release the lander (Mare Explorer) to target one of the two large northern polar seas, probably Kraken Mare, and the Montgolfiere balloon system to target the mid latitude region. During the tour phase, TSSM would accomplish Saturn system and Enceladus science (at least 4 Enceladus flybys with instrumentation for plume sampling well beyond Cassini capability) while executing Titan pump down manoeuvres to minimize the required amount of propellant required for Titan orbit insertion. Following its Saturn system tour, the spacecraft would enter into a 950 km by 15,000 km elliptical orbit around Titan. The next phase would utilize concurrent aerosampling and aerobraking (to depths as low as 600 km altitude) in Titan's upper atmosphere, gradually moving the orbit toward circular and reducing the propellant required to achieve a final circular mapping orbit. The spacecraft would execute a final periapsis raise burn to achieve a 1500 km circular, 85º polar mapping orbit plane. Instruments aboard the orbiter would map Titan's surface at 50 meter resolution in the 5 micron window, provide a global data set of topography and sound the immediate subsurface to identify layers and porous (possibly liquid-filled) reservoirs, sample high molecular weight organics, provide detailed observations of the atmosphere at all levels, and quantify the interaction of Titan with the Saturn magnetospheric environment. A subset of the instruments would provide spectra, imaging, plume sampling and particles and fields data on Enceladus. Instruments aboard the balloon would provide high resolution vistas of the surface of Titan as the balloon cruises at 10 km altitude, as well as make compositional measurements of the surface, detailed sounding of crustal layering, and chemical measurements of aerosols. A magnetometer, unimpeded by Titan's ionosphere, would permit sensitive detection of induced or intrinsic fields. The Mare Explorer would splash into a large northern sea and spend several hours floating during which direct chemical and physical sampling of the liquid—a carrier for many dissolved organic species— would be undertaken. During its descent the Mare Explorer would provide the first in situ profiling of the winter northern hemispheric atmosphere, which is distinctly different from the equatorial atmosphere where Huygens descended and the balloon will arrive. Coordinated radio science experiments aboard the orbiter and in situ elements would be capable of providing detailed information on Titan's tidal response, and hence its crustal rigidity and thickness.
Beauchamp Pierre
Coustenis Athena
Erd Ch.
Lebreton Jean-Pierre
Lunine Jonathan I.
No associations
LandOfFree
TSSM: An International Mission to Titan and the Saturn System does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with TSSM: An International Mission to Titan and the Saturn System, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and TSSM: An International Mission to Titan and the Saturn System will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1793901