Gravitational radiation reaction for bound motion around a Schwarzschild black hole

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

86

Wave Generation And Sources, Numerical Relativity, Black Holes

Scientific paper

A particle of mass μ moves, in the absence of external forces, in the geometry of a nonrotating black hole of mass M. The system (black hole plus particle) emits gravitational waves, and the particle’s orbit evolves under radiation reaction. The aim of this paper is to calculate this evolution. Our calculations are carried out under the assumptions that μ/M≪1, that the orbit is bound, and that radiation reaction takes place over a time scale much longer than the orbital period. The bound orbits of the Schwarzschild spacetime can be fully characterized, apart from initial conditions, by two orbital parameters: the semi-latus rectum p, and the eccentricity e. These parameters are so defined that the turning points of the radial motion (the values of the Schwarzschild radial coordinate at which the radial component of the four-velocity vanishes) are given by r1=pM/(1+e) and r2=pM/(1-e). The units are such that G=c=1. We use the Teukolsky perturbation formalism to calculate the rates at which the gravitational waves generated by the orbiting particle remove energy and angular momentum from the system. These are then related to the rates of change of p and e, which determine the orbital evolution. We find that the radiation reaction continually decreases p, in such a way that the particle eventually plunges inside the black hole. Plunging occurs when p becomes smaller than 6+2e. (Orbits for which p<6+2e do not have a turning point at r=r1). For weak-field, slow-motion orbits (which are characterized by large values of p), the radiation reaction decreases e also. However, for strong-field fast-motion orbits (small values of p), the radiation reaction increases the eccentricity if p is sufficiently close to its minimum value 6+2e. The change of sign of de/dt can be interpreted as a precursor effect to the eventual plunging of the orbit.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Gravitational radiation reaction for bound motion around a Schwarzschild black hole does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Gravitational radiation reaction for bound motion around a Schwarzschild black hole, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Gravitational radiation reaction for bound motion around a Schwarzschild black hole will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1711878

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.