Physics – Quantum Physics
Scientific paper
2006-05-29
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2 (2006) Paper 066, 14 pages
Physics
Quantum Physics
13 pages, 6 figures Fig. 3 improved, typos corrected; Version 4: Final Version Published in SIGMA (Symmetry, Integrability and
Scientific paper
The paper explores the basic geometrical properties of the observables characterizing two-qubit systems by employing a novel projective ring geometric approach. After introducing the basic facts about quantum complementarity and maximal quantum entanglement in such systems, we demonstrate that the 15$\times$15 multiplication table of the associated four-dimensional matrices exhibits a so-far-unnoticed geometrical structure that can be regarded as three pencils of lines in the projective plane of order two. In one of the pencils, which we call the kernel, the observables on two lines share a base of Bell states. In the complement of the kernel, the eight vertices/observables are joined by twelve lines which form the edges of a cube. A substantial part of the paper is devoted to showing that the nature of this geometry has much to do with the structure of the projective lines defined over the rings that are the direct product of $n$ copies of the Galois field GF(2), with $n$ = 2, 3 and 4.
Kibler Maurice R.
Planat Michel R. P.
Saniga Metod
No associations
LandOfFree
Quantum Entanglement and Projective Ring Geometry does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Quantum Entanglement and Projective Ring Geometry, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Quantum Entanglement and Projective Ring Geometry will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-168318