Temporal behavior of quantum mechanical systems

Physics – Quantum Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

48 pages, LaTeX, uuencoded file with 7 figures included

Scientific paper

The temporal behavior of quantum mechanical systems is reviewed. We study the so-called quantum Zeno effect, that arises from the quadratic short-time behavior, and the analytic properties of the ``survival" amplitude. It is shown that the exponential behavior is due to the presence of a simple pole in the second Riemannian sheet, while the contribution of the branch point yields a power behavior for the amplitude. The exponential decay form is cancelled at short times and dominated at very long times by the branch-point contributions, which give a Gaussian behavior for the former and a power behavior for the latter. In order to realize the exponential law in quantum theory, it is essential to take into account a certain kind of macroscopic nature of the total system. Some attempts at extracting the exponential decay law from quantum theory, aiming at the master equation, are briefly reviewed, including van Hove's pioneering work and his well-known ``$\lambda^2T$" limit. We clarify these general arguments by introducing and studying a solvable dynamical model. Some implications for the quantum measurement problem are also discussed, in particular in connection with dissipation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Temporal behavior of quantum mechanical systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Temporal behavior of quantum mechanical systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Temporal behavior of quantum mechanical systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-167601

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.