Physics – High Energy Physics – High Energy Physics - Theory
Scientific paper
1999-07-16
J.Phys.A34:2583-2594,2001
Physics
High Energy Physics
High Energy Physics - Theory
Changed content
Scientific paper
10.1088/0305-4470/34/12/306
Based on results for real deformation parameter q we introduce a compact non- commutative structure covariant under the quantum group SOq(3) for q being a root of unity. To match the algebra of the q-deformed operators with necesarry conjugation properties it is helpful to define a module over the algebra genera- ted by the powers of q. In a representation where X is diagonal we show how P can be calculated. To manifest some typical properties an example of a one-di- mensional q-deformed Heisenberg algebra is also considered and compared with non-compact case.
No associations
LandOfFree
Non-commutative Euclidean structures in compact spaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Non-commutative Euclidean structures in compact spaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-commutative Euclidean structures in compact spaces will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-162836