Fast Fermi and gradient drift acceleration of electrons at nearly perpendicular collisionless shocks

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

37

Bow Waves, Electron Acceleration, Electron Energy, Magnetic Moments, Plasmasphere, Shock Wave Interaction, Electromagnetic Radiation, Electrostatic Waves, Particle Interactions

Scientific paper

Electrons can be reflected and effectively energized at quasi-perpendicular shocks. At a curved shock this process is most prominent where the upstream magnetic field and the shock surface are tangent. A theoretical explanation of the underlying physical mechanism in terms of fast Fermi acceleration has been proposed in the literature. The theory uses properties of the de Hoffmann-Teller frame and assumes conservation of magnetic moment in a static, simplified shock profile. Here, the discussion is extended in order to clarify certain aspects of the reflection process and to pinpoint the physical mechanisms that are operative and dominant from the viewpoint of the normal incidence frame. By reducing the analysis to the essential physical content and solving the pertinent energy equation, the equivalence of fast Fermi and gradient drift acceleration is shown.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Fast Fermi and gradient drift acceleration of electrons at nearly perpendicular collisionless shocks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Fast Fermi and gradient drift acceleration of electrons at nearly perpendicular collisionless shocks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fast Fermi and gradient drift acceleration of electrons at nearly perpendicular collisionless shocks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1616817

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.