Physics
Scientific paper
Apr 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010jgre..11500d16c&link_type=abstract
Journal of Geophysical Research, Volume 115, Issue 1, CiteID E00D16
Physics
7
Planetary Sciences: Solid Surface Planets: Polar Regions, Planetary Sciences: Solid Surface Planets: Ices, Planetary Sciences: Solar System Objects: Mars, Planetary Sciences: Solid Surface Planets: Remote Sensing, Planetary Sciences: Solid Surface Planets: Surface Materials And Properties
Scientific paper
The condensation, evolution, and sublimation of seasonal water and carbon dioxide ices were characterized at the Mars Phoenix landing site from Martian northern midsummer to midspring (Ls ˜ 142° - Ls ˜ 60°) for the year prior to the Phoenix landing on 25 May 2008. Ice relative abundances and grain sizes were estimated using data from the Compact Reconnaissance Imaging Spectrometer for Mars and High Resolution Imaging Science Experiment aboard Mars Reconnaissance Orbiter and a nonlinear mixing model. Water ice first appeared at the Phoenix landing site during the afternoon in late summer (Ls ˜ 167°) as an optically thin layer on top of soil. CO2 ice appeared after the fall equinox. By late winter (Ls ˜ 344°), the site was covered by relatively pure CO2 ice (˜30 cm thick), with a small amount of ˜100 μm diameter water ice and soil. As spring progressed, CO2 ice grain sizes gradually decreased, a change interpreted to result from granulation during sublimation losses. The combined effect of CO2 sublimation and decreasing H2O ice grain sizes allowed H2O ice to dominate spectra during the spring and significantly brightened the surface. CO2 ice disappeared by early spring (Ls ˜ 34°) and H2O ice by midspring (Ls ˜ 59°). Spring defrosting was not uniform and occurred more rapidly over the centers of polygons and geomorphic units with relatively higher thermal inertia values.
Arvidson Raymond E.
Clark Roger
Cull Selby
McGuire Patrick
Mellon Michael
No associations
LandOfFree
Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Seasonal H2O and CO2 ice cycles at the Mars Phoenix landing site: 1. Prelanding CRISM and HiRISE observations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1585142