Physics
Scientific paper
Feb 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008natur.451..685s&link_type=abstract
Nature, Volume 451, Issue 7179, pp. 685-688 (2008).
Physics
31
Scientific paper
One of the spectacular discoveries of the Cassini spacecraft was the plume of water vapour and icy particles (dust) originating near the south pole of Saturn's moon Enceladus. The data imply considerably smaller velocities for the grains than for the vapour, which has been difficult to understand. The gas and dust are too dilute in the plume to interact, so the difference must arise below the surface. Here we report a model for grain condensation and growth in channels of variable width. We show that repeated wall collisions of grains, with re-acceleration by the gas, induce an effective friction, offering a natural explanation for the reduced grain velocity. We derive particle speed and size distributions that reproduce the observed and inferred properties of the dust plume. The gas seems to form near the triple point of water; gas densities corresponding to sublimation from ice at temperatures less than 260K are generally too low to support the measured particle fluxes. This in turn suggests liquid water below Enceladus' south pole.
Brilliantov Nikolai
Kempf Sascha
Schmidt Jürgen
Spahn Frank
No associations
LandOfFree
Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1527217