Physics
Scientific paper
Sep 2000
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000a%26a...361l..53h&link_type=abstract
Astronomy and Astrophysics, v.361, p.L53-L56 (2000)
Physics
5
Black Hole Physics, Accretion, Accretion Disks, Hydrodynamics, Radiation Mechanisms: Non-Thermal
Scientific paper
Our quasi-steady 2D numerical radiative hydrodynamical investigations of two-temperature accretion flows around black holes indicate that standard disks are thermally and hydrodynamically stable against transition to optically thin disks at large radii. Optically thin disks cool sufficiently rapid at large radii inducing a vertical collapse and forming thereby a standard disk which truncates close to the last stable orbit. In the absence of soft photons from the adjusting standard disk, we confirm the runaway cooling of the inner optically thin disk. This runaway however terminates if the radial flux of soft photons from the outer standard disk is taken into account. Instead, a cooling-driven front starts to propagates from outside-to-inside continuously extending the thick disk down to the very inner region where it terminates via an oppositely-oriented heating front that forms a hot advective and sub-keplerian torus. The transition between the two configuration occurs where the ratio of the cooling to the heating time attains a minimum value. The transition is found to be rather sharp and gives rise to outwards-oriented motions of very hot plasma that enlarges the combined Compton-Synchrotron cooling regions considerably. While the disk-torus configuration obtained depends weakly on whether the flow is a one or two-temperature plasma, one-temperature tori are hotter and fill larger volumes than their two-temperature counterparts.
Camenzind Max
Hujeirat A. A.
No associations
LandOfFree
Truncated disks - advective tori; new solutions of accretion flows around black holes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Truncated disks - advective tori; new solutions of accretion flows around black holes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Truncated disks - advective tori; new solutions of accretion flows around black holes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1522123