The Location and most Viable Magnetic Mineral of the Magnetic Layer of Mars Crust

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

[5440] Planetary Sciences: Solid Surface Planets / Magnetic Fields And Magnetism

Scientific paper

The discovery of strong magnetic anomalies of remanant origin over the southern hemisphere of Mars [1] has provided the challenge to estimate the thickness of the magnetic crust and identify magnetic minerals capable of producing the anomalies. The power spectral analysis of the magnetic anomalies suggests a magnetic crust of 46 km thickness [2]. Estimates of depth to Curie temperature of viable magnetic mineral at about 4 Ga imply that the potentially magnetic layer must have been in the upper 70 km of the crust [3], and that the lower ~10 km must have been effectively demagnetized since by viscous decay [4]. The rock magnetic measurements show appreciable demagnetization at hydrostatic pressures up to 1.2 GPa [5], consistent with the above estimate of the magnetic layer thickness. The distinct lack of magnetic signature of many giant impact basins indicates that the impacts have demagnetized the crust. Detailed study of the magnetic anomalies surrounding Hellas, Isidis, and Argyre suggests that the area inside ~80% of the basin radius is almost completely demagnetized [6], as is confirmed by recent investigations [7,8]. First we use the evidence from these giant basins and show that Pierazzo et al. [1997] shock pressure distribution model with maximum decay exponent is most viable for Martian crust among the 6 models proposed. Using this model, we then determine the demagnetization of the crust by impacts that can create 10-500 km diameter craters. The surface of Mars is saturated by craters of diameters <100 km, which have completely demagnetized the upper ~10 km of Mars. The impacts that create 200-500 km diameter craters are capable of demagnetizing the entire crust beneath the craters. Second, we model topography, gravity, and magnetic data over all craters of diameters 300-600 km located in the southern hemisphere of Mars. The topography and gravity data suggest that majority of the craters are isostatically compensated and have distinct mantle plugs directly beneath, suggesting that impacts have effectively disturbed the crust. Many of the craters have well-defined magnetic signatures. Modeling a magnetic anomaly under the assumption that a) the mantle plug beneath a crater is non magnetic, b) the anomaly is due to impact demagnetization of the crust, and c) the impact heating has elevated the temperature and further enhanced viscous decay of magnetization in the lower part of the crust, provides a means to identify magnetite as the most viable magnetic carrier in the Martian crust. [1] Acuña, M.H. et al., Science 284, 790-793, 1999. [2] Voorhies, C.V. JGR, 821, 113, E04004, 2008. [3] Arkani-Hamed, J., JGR,110, 585, E08005, 2005. [4] Shahnas, H. and J. Arkani-Hamed, JGR, 112, E02009, 2007. [5] Bezaeva, N.S. et al., PEPI, 197, 7-20, 2010. [6] Mohit, P.S. and J. Arkani-Hamed, Icarus 168, 305-317, 2004. [7] Lillis, R.J.,et al., LPSC, XL, Abs. No. 1444, 2009. [8] Louzada, K.L., et al., EPSL, submitted, 2010. [9] Pierazzo, E. et al., Icarus 127, 408-423, 1997.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Location and most Viable Magnetic Mineral of the Magnetic Layer of Mars Crust does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Location and most Viable Magnetic Mineral of the Magnetic Layer of Mars Crust, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Location and most Viable Magnetic Mineral of the Magnetic Layer of Mars Crust will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1497682

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.