Physics
Scientific paper
Dec 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010agufmsm43a1906l&link_type=abstract
American Geophysical Union, Fall Meeting 2010, abstract #SM43A-1906
Physics
[2704] Magnetospheric Physics / Auroral Phenomena, [2721] Magnetospheric Physics / Field-Aligned Currents And Current Systems, [2736] Magnetospheric Physics / Magnetosphere/Ionosphere Interactions, [2764] Magnetospheric Physics / Plasma Sheet
Scientific paper
The magnetospheric electron precipitation along the upward field-aligned currents without the potential difference causes diffuse aurora, and the magnetospheric electrons accelerated by a field-aligned potential difference cause the intense and bright type of aurora, namely discrete aurora. In this study, we are trying to find out when and where the aurora can be caused with or without electron acceleration. We statistically investigate electron density, temperature, thermal current, and conductivity in the plasma sheet using the data from the electrostatic analyzer (ESA) onboard the THEMIS-D satellite launched in 2007. According to Knight (Planet. Space Sci., 1973) and Lyons (JGR, 1980), the thermal current, jth(∝ nT^(1/2) where n is electron density and T is electron temperature in the plasma sheet), represents the upper limit to field aligned current that can be carried by magnetospheric electrons without field-aligned potential difference. The conductivity, K(∝ nT^(-1/2)), represents the efficiency of the upward field-aligned current (j) that the field-aligned potential difference (V) can produce (j=KV). Therefore, estimating jth and K in the plasma sheet is important in understanding the ability of plasma sheet electrons to carry the field-aligned current which is driven by various magnetospheric processes such as flow shear and azimuthal pressure gradient. Similar study was done by Shiokawa et al. (2000) based on the auroral electron data obtained by the DMSP satellites above the auroral oval and the AMPTE/IRM satellite in the near Earth plasma sheet at 10-18 Re on February-June 1985 and March-June 1986 during the solar minimum. The purpose of our study is to examine auroral electrons with pitch angle information inside 12 Re where Shiokawa et al. (2000) did not investigate well. For preliminary result, we found that in the dawn side inner magnetosphere (source of the region 2 current), electrons can make sufficient thermal current without field-aligned potential difference, particularly during active time (AE > 100 nT). On the other hand, in the dusk side outer magnetosphere (source of the region 1), electron density and temperature are small, thus the thermal current is much smaller than the typical auroral current suggested by Iijima and Potemra (JGR, 1976). From this result, we suppose that electron acceleration is necessary on the dusk side region 1 upward field-aligned current. Our preliminary result, however, does not consider contamination of the radiation belt particles into the ESA data that is apparent inside 9 Re. In the presentation, we show the results with removal of the radiation belt particle contamination.
Lee Seongsu
McFadden James P.
Shiokawa Kazuhiko
No associations
LandOfFree
A statistical study of the THEMIS satellite data for plasma sheet electrons carrying auroral upward field-aligned currents does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with A statistical study of the THEMIS satellite data for plasma sheet electrons carrying auroral upward field-aligned currents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and A statistical study of the THEMIS satellite data for plasma sheet electrons carrying auroral upward field-aligned currents will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1473199