Physics
Scientific paper
Sep 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011jgra..11600k15m&link_type=abstract
Journal of Geophysical Research, Volume 116, CiteID A00K15
Physics
1
Magnetospheric Physics: Auroral Phenomena (2407), Magnetospheric Physics: Electric Fields (2411), Magnetospheric Physics: Energetic Particles: Precipitating, Magnetospheric Physics: Numerical Modeling, Magnetospheric Physics: Plasma Waves And Instabilities (2471)
Scientific paper
With the help of a 2.5-D particle-in-cell simulation code, we investigate the physics of the acceleration of auroral electrons, through the interaction of an isolated Alfvén wave packet with a plasma density cavity. The cavity is edged by density gradients perpendicular to the magnetic field. We show that a single passing of an isolated wave packet over a (infinite) cavity creates an electron beam. It triggers local current and beam-plasma instabilities and small-scale coherent electric structures. The energy flux of downgoing electrons is significantly increased, whereas upgoing electrons are also accelerated, even if no beam is formed. Accelerated electrons remain after the passage of the Alfvénic pulse, allowing the observation of energetic particles without any significant electromagnetic perturbation. The dependence of this process on the electron to ion mass ratio is consistent with its control by inertial effects.
Génot Vincent
Mottez Fabrice
No associations
LandOfFree
Electron acceleration by an Alfvénic pulse propagating in an auroral plasma cavity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Electron acceleration by an Alfvénic pulse propagating in an auroral plasma cavity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electron acceleration by an Alfvénic pulse propagating in an auroral plasma cavity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1405314