Physics
Scientific paper
May 1999
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1999jgr...104.9791d&link_type=abstract
Journal of Geophysical Research, Volume 104, Issue A5, p. 9791-9800
Physics
23
Interplanetary Physics: Solar Wind Plasma
Scientific paper
We study the latitudinal distribution of the H I Lyman α and O VI (103.2 nm and 103.7 nm) line emission during the period of the Whole Sun Month campaign (August 10 to September 8, 1996) when the Sun was close to the minimum of its activity. The H I Lyman α and O VI line intensities appeared to be almost constant with latitude within the polar coronal holes and have abrupt increases toward the streamer region. We found that both north and south polar coronal holes had similar line intensities and line-of-sight velocities, as well as kinetic temperatures of H0 and O5+. The dependence of these parameters on latitude and radius is provided. We derived boundaries of the polar coronal holes based on the H I Lyman α and O VI line intensity distributions for several days during the Whole Sun Month campaign. We found that the polar coronal hole boundaries clearly have a superradial geometry with diverging factor fmax ranging from 6.0 to 7.5, and they are consistent with boundaries previously derived from the electron density distributions. We also found that, in general, they are not symmetric with respect to the heliographic poles, and their size and geometry change over periods of days. The H I Lyman α, O VI (103.2 nm), and the O VI (103.7 nm) line intensities showed similar boundaries within the uncertainties of our data. We modeled the latitudinal distribution of the H I Lyman α and O VI (103.2 nm and 103.7 nm) line intensities in the south polar coronal hole on August 17, 1996, assuming the coronal plasma outflow along either purely radial or nonradial flux tubes. A comparison of model predictions with the observed distributions shows evidence that the outflow velocity vectors follow nonradial intensity pattern.
Cranmer Steven R.
Dobrzycka Danuta
Kohl John L.
Panasyuk Alexander V.
Strachan Leonard
No associations
LandOfFree
Study of the latitudinal dependence of H I Lyman α and O VI emission in the solar corona: Evidence for the superradial geometry of the outflow in the polar coronal holes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Study of the latitudinal dependence of H I Lyman α and O VI emission in the solar corona: Evidence for the superradial geometry of the outflow in the polar coronal holes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Study of the latitudinal dependence of H I Lyman α and O VI emission in the solar corona: Evidence for the superradial geometry of the outflow in the polar coronal holes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1377535