Physics
Scientific paper
Sep 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008jgra..11309212k&link_type=abstract
Journal of Geophysical Research, Volume 113, Issue A9, CiteID A09212
Physics
11
Magnetospheric Physics: Radiation Belts, Magnetospheric Physics: Energetic Particles: Trapped, Magnetospheric Physics: Magnetosphere: Inner, Magnetospheric Physics: Solar Wind/Magnetosphere Interactions
Scientific paper
It has been suggested that drift loss to the magnetopause can be one of the major loss mechanisms contributing to relativistic electron flux dropouts. In this study, we examine details of relativistic electrons' drift physics to determine the extent to which the drift loss through the magnetopause is important to the total loss of the outer radiation belt. We have numerically computed drift paths of relativistic electrons' guiding center for various pitch angles, various measurement positions, and different solar wind conditions using the Tsyganenko T02 model. We specifically demonstrate how the drift loss effect depends on these various parameters. Most importantly, we present various estimates of relative changes of the omnidirectional flux of 1 MeV electrons between two different solar wind conditions based on a simple form of the directional flux function. For a change of the dynamic pressure from 4 nPa to 10 nPa with a fixed IMF B Z = 0 nT, our estimate indicates that after this increase in pressure, the equatorial omnidirectional flux at midnight near geosynchronous altitude decreases by ~56 to ~97%, depending on the specific pitch angle dependence of the directional flux. The effect rapidly decreases at regions earthward of geosynchronous orbit and shows a general trend of decrease away from midnight. For a change of the IMF B Z from 0 nT to -15 nT with a fixed dynamic pressure of 4 nPa, the relative decrease of the omnidirectional flux at geosynchronous altitude on the nightside is much smaller than that for the pressure increase, but its effect becomes substantial only beyond geosynchronous orbit. Possibilities exist that our results may change to some extent for a different magnetospheric model than the one used here.
Choi Cheong-Rim
Kim Hyeong-Jin
Kim Kyung Chan
Lee Dong-Yup
Lee En-Sang
No associations
LandOfFree
Numerical calculations of relativistic electron drift loss effect does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Numerical calculations of relativistic electron drift loss effect, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical calculations of relativistic electron drift loss effect will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1336337