Physics
Scientific paper
Jun 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007njph....9..177k&link_type=abstract
New Journal of Physics, Volume 9, Issue 6, pp. 177 (2007).
Physics
16
Scientific paper
Fractal scaling and self-similar connectivity behaviour of scale-free (SF) networks are reviewed and investigated in diverse aspects. We first recall an algorithm of box-covering that is useful and easy to implement in SF networks, the so-called random sequential box-covering. Next, to understand the origin of the fractal scaling, fractal networks are viewed as comprising of a skeleton and shortcuts. The skeleton, embedded underneath the original network, is a spanning tree specifically based on the edge-betweenness centrality or load. We show that the skeleton is a non-causal tree, either critical or supercritical. We also study the fractal scaling property of the k-core of a fractal network and find that as k increases, not only does the fractal dimension of the k-core change but also eventually the fractality no longer holds for large enough k. Finally, we study the self-similarity, manifested as the scale-invariance of the degree distribution under coarse-graining of vertices by the box-covering method. We obtain the condition for self-similarity, which turns out to be independent of the fractality, and find that some non-fractal networks are self-similar. Therefore, fractality and self-similarity are disparate notions in SF networks.
Goh Kwang-Il
Kahng Byungnam
Kim Dongseok
Kim Jinyoung Serena
No associations
LandOfFree
Fractality and self-similarity in scale-free networks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Fractality and self-similarity in scale-free networks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fractality and self-similarity in scale-free networks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1327648