The Accretion Disk Limit Cycle Instability in Black Hole X-Ray Binaries

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

84

Accretion, Accretion Disks, Black Hole Physics, X-Rays: Stars

Scientific paper

We investigate the operation of the limit cycle mechanism in accretion disks around ˜10 Msun black holes. We explore a regime of parameter space relevant to these systems, and delineate a range of possible behaviors by testing the response of our one-dimensional, time-dependent, hydrodynamic model to variations in each of the control parameters in the theory. These parameters are the number of radial grid points N, the accretor mass M1, the inner disk radius rinner, the outer disk radius router, the mass transfer rate into the outer disk from the secondary star MdotT, and the accretion disk viscosity parameter α -- parameterized in separate computations both in terms of radius (including a step function between low and high states) and in terms of local aspect ratio h/r.
For the class of models in which α is taken to vary in a step function between the two stable branches of accretion, we find a tendency for the outbursts to exhibit faster-than-exponential decays, in contrast to the observations. This behavior cannot be substantially affected by taking α to vary with radius α ∝ rɛ as in previous works, nor is it affected by the numerical resolution. Models in which α is a function of the local aspect ratio h/r can produce robustly exponential decays as observed if α ∝ (h/r)n, where n = 1.5. This critical value for n is independent of the primary mass, unlike the critical ɛ value in the rɛ scaling. Numerically, we find that the transition front width is equal to the geometric average of h and r. (It is this fact that leads to the critical value n = 1.5 for exponential decay.) Previous studies have lacked the numerical resolution to make this determination, and in fact the specific results presented in earlier papers were probably severely compromised by grid spacing limitations. Finally, for models in which the decay is produced by accretion onto the central object rather than by the action of a cooling front, we require n = -2 for exponential decays.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Accretion Disk Limit Cycle Instability in Black Hole X-Ray Binaries does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Accretion Disk Limit Cycle Instability in Black Hole X-Ray Binaries, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Accretion Disk Limit Cycle Instability in Black Hole X-Ray Binaries will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1257874

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.