String thresholds and Renormalisation Group Evolution

Physics – High Energy Physics – High Energy Physics - Phenomenology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

24 pages, LaTeX

Scientific paper

10.1016/S0550-3213(99)00770-1

We consider the calculation of threshold effects due to Kaluza Klein and winding modes in string theory. We show that for a large radius of compactification these effects may be approximated by an effective field theory applicable below the string cut-off scale. Using this formalism we show that the radiative contribution to gauge couplings involving only massive Kaluza Klein and winding modes may be calculated to all orders in perturbation theory and determine the full two loop contribution involving light modes and estimate the magnitude of the higher-order contributions. For the case of the weakly coupled heterotic string we also discuss how an improved calculation can be made incorporating the string theory threshold corrections which avoids the limitations of the effective field theory approach. Using this formalism we determine the implications for gauge coupling unification for one representative model including the effects of two loop corrections above the compactification scale. Finally we discuss the prospects for gauge unification in Type I models with a low string scale and point out potential fine tuning problems in this case.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

String thresholds and Renormalisation Group Evolution does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with String thresholds and Renormalisation Group Evolution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and String thresholds and Renormalisation Group Evolution will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-124753

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.