Physics
Scientific paper
Oct 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010georl..3720105e&link_type=abstract
Geophysical Research Letters, Volume 37, Issue 20, CiteID L20105
Physics
6
Ionosphere: Ionosphere/Magnetosphere Interactions (2736), Ionosphere: Planetary Ionospheres (5435, 5729, 6026), Ionosphere: Plasma Temperature And Density, Magnetospheric Physics: Magnetosphere Interactions With Satellites And Rings, Atmospheric Composition And Structure: Evolution Of The Atmosphere (1610, 8125)
Scientific paper
We present electron temperature and density measurements of Titan's cold ionospheric plasma from the Langmuir probe instrument on Cassini from 52 flybys. An expression of the density as a function of temperature is presented for altitudes below two Titan radii. The density falls off exponentially with increased temperature as log(ne) = -2.0log(Te) + 0.6 on average around Titan. We show that this relation varies with location around Titan as well as with the solar illumination direction. Significant heating of the electrons appears to take place on the night/wake side of Titan as the density-temperature relation is less steep there. Furthermore, we show that the magnetospheric ram pressure is not balanced by the thermal and magnetic pressure in the topside ionosphere and discuss its implications for plasma escape. The cold ionospheric plasma of Titan extends to higher altitudes in the wake region, indicating the loss of atmosphere down the induced magnetospheric tail.
Ågren K.
Bertucci Cesar
Dougherty K. M. K. M.
Edberg Niklas J. T.
Modolo Ronan
No associations
LandOfFree
Electron density and temperature measurements in the cold plasma environment of Titan: Implications for atmospheric escape does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Electron density and temperature measurements in the cold plasma environment of Titan: Implications for atmospheric escape, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electron density and temperature measurements in the cold plasma environment of Titan: Implications for atmospheric escape will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1231469