Physics
Scientific paper
Nov 2000
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000a%26a...363..425s&link_type=abstract
Astronomy and Astrophysics, v.363, p.425-439 (2000)
Physics
20
Accretion, Accretion Disks, Black Hole Physics, Gravitation, Relativity, Galaxies: Quasars: General
Scientific paper
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
Hledik Stanislav
Slaný Petr
Stuchlik Zdenek
No associations
LandOfFree
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1146886