Physical Meaning of the Equinoctial Effect for Seasonal Variation of Geomagnetic Activity

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2723 Magnetic Reconnection (7526, 7835), 2756 Planetary Magnetospheres (5443, 5737, 6033), 2784 Solar Wind/Magnetosphere Interactions, 5737 Magnetospheres (2756), 7999 General Or Miscellaneous

Scientific paper

The general tendency for magnetic disturbances to be more stormy at equinoxes than at solstices has been recognised for more than 150 years. To explain the seasonal variation three principal hypotheses have been proposed; the axial hypothesis (Cortie, 1912), the equinoctial hypothesis (Bartels, 1932; McIntosh, 1959), and the Russell and McPherron (RM) hypothesis (Russell and McPherron, 1973). The RM hypothesis, which is based on the recognition that the magnetic field in the solar equatorial plane tends to have the largest southward component in geocentric solar magnetospheric (GSM) coordinates in early April and October, has been largely accepted for many years. However, recent studies have confirmed that the RM effect accounts for only a subordinate proportion of the seasonal variation of geomagnetic activity, and that the larger part of the phenomenon is attributable to the equinoctial effect in which the angle between the solar wind flow and the dipole axis of the Earth plays an essential role (Cliver, Kamide and Ling, 2000; Cliver, Kamide, Ling and Yokoyama, 2001; O'Brien and McPherron, 2002). In this paper physical meaning of the equinoctial effect is investigated based on the data of three-hourly am index and solar wind parameters acquired by the ACE satellite. The am indices are well correlated with BsVxVx, where Bs is the southward component of the interplanetary magnetic field (IMF) and Vx is the solar wind velocity in the sun-earth direction. It is found, however, that the am - BsVxVx relation depends on the range of VxVx: The am in higher ranges of VxVx tends to be larger than am in lower ranges of VxVx for both equinoctial and solstitial epochs for the same value of BsVxVx. Using the data sets of the same VxVx range, it is shown that distribution of points in the am - BsVxVx diagram at the solstitial epochs overlaps with that at the equinoctial epochs and the average am values in each BsVxVx bin in solstitial epochs are almost equal to those in equinoctial epochs, if VxVx for each point at solstices are reduced to VxVx sin (c) where c is the geomagnetic colatitude of the sub-solar point. This finding indicates that the emergence of the geomagnetic disturbance is regulated by the component of the solar wind velocity perpendicular to the dipole axis of the geomagnetic field. The magnitude of the perpendicular velocity component varies seasonally even if the solar wind velocity remains constant. This appears to be the long-missed key factor causing the equinoctial effect. It is interesting to note that both the RM and equinoctial effects are related to seasonal changes in the efficiency of solar wind - magnetosphere coupling caused by changes in the geometric configuration between the sun and the geomagnetic dipole field, one in relation to Bs of the IMF, and the other in relation to the component of solar wind velocity perpendicular to the dipole axis.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Physical Meaning of the Equinoctial Effect for Seasonal Variation of Geomagnetic Activity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Physical Meaning of the Equinoctial Effect for Seasonal Variation of Geomagnetic Activity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Physical Meaning of the Equinoctial Effect for Seasonal Variation of Geomagnetic Activity will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1095174

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.