Structure of positive decompositions of exponential operators

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14

Quantum Monte Carlo Methods, Molecular Dynamics And Particle Methods, Celestial Mechanics

Scientific paper

The solution of many physical evolution equations can be expressed as an exponential of two or more operators acting on initial data. Accurate solutions can be systematically derived by decomposing the exponential in a product form. For time-reversible equations, such as the Hamilton or the Schrödinger equation, it is immaterial whether or not the decomposition coefficients are positive. In fact, most symplectic algorithms for solving classical dynamics contain some negative coefficients. For time-irreversible systems, such as the Fokker-Planck equation or the quantum statistical propagator, only positive-coefficient decompositions, which respect the time-irreversibility of the diffusion kernel, can yield practical algorithms. These positive time steps only, forward decompositions, are a highly effective class of factorization algorithms. This work presents a framework for understanding the structure of these algorithms. By a suitable representation of the factorization coefficients, we show that specific error terms and order conditions can be solved analytically. Using this framework, we can go beyond the Sheng-Suzuki theorem and derive a lower bound for the error coefficient eVTV . By generalizing the framework perturbatively, we can further prove that it is not possible to have a sixth-order forward algorithm by including only the commutator [VTV]≡[V,[T,V]] . The pattern of these higher-order forward algorithms is that in going from the (2n)th to the (2n+2)th order, one must include a different commutator [VT2n-1V] in the decomposition process.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Structure of positive decompositions of exponential operators does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Structure of positive decompositions of exponential operators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structure of positive decompositions of exponential operators will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1065493

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.