Shadow of a Large Disc Casts New Light on the Formation of High Mass Stars

Physics – Optics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Massive Star Observed that Forms through a Rotating Accretion Disc
Summary
Based on a large observational effort with different telescopes and instruments, mostly from the European Southern Observatory (ESO), a team of European astronomers [1] has shown that in the M 17 nebula a high mass star [2] forms via accretion through a circumstellar disc, i.e. through the same channel as low-mass stars.
To reach this conclusion, the astronomers used very sensitive infrared instruments to penetrate the south-western molecular cloud of M 17 so that faint emission from gas heated up by a cluster of massive stars, partly located behind the molecular cloud, could be detected through the dust.
Against the background of this hot region a large opaque silhouette, which resembles a flared disc seen nearly edge-on, is found to be associated with an hour-glass shaped reflection nebula. This system complies perfectly with a newly forming high-mass star surrounded by a huge accretion disc and accompanied by an energetic bipolar mass outflow.
The new observations corroborate recent theoretical calculations which claim that stars up to 40 times more massive than the Sun can be formed by the same processes that are active during the formation of stars of smaller masses.
PR Photo 15a/04: Stellar cluster and star-forming region M 17 (also available without text inside photo) PR Photo 15b/04: Silhouette disc seen in M 17 PR Photo 15c/04: Rotation of the disc in M 17. PR Photo 15d/04: Bipolar reflection nebula and silhouette disc of a young, massive star in M 17 PR Photo 15e/04: Optical spectrum of the bipolar nebula. PR Video 03/04: Zooming in onto the disc. The M 17 region
ESO PR Photo 15a/04
ESO PR Photo 15a/04
[Preview - JPEG: 400 x 497 pix - 271k] [Normal - JPEG: 800 x 958 pix - 604k]
ESO PR Photo 15a1/04
ESO PR Photo 15a/04 (without text within photo)
[Preview - JPEG: 400 x 480 pix - 275k] [Normal - JPEG: 800 x 959 pix - 634k] [High-Res - JPEG: 3000 x 3597 pix - 3.8M] [Full-Res - JPEG: 3815 x 4574 pix - 5.4M]
Caption: PR Photo 15a/04 is a reproduction of a three-colour composite of the sky region of M 17, a H II region excited by a cluster of young, hot stars. A large silhouette disc has been found to the south-west of the cluster centre. The area within the indicated square is shown in more detail in PR Photo 15b/04. The present image was obtained with the ISAAC near-infrared instrument at the 8.2-m VLT ANTU telescope at Paranal. In the left photo, the orientation and the scale at the distance of M 17 (7,000 light-years) are indicated, and the main regions are identified. To the right, this beautiful photo is available without text and in full resolution for reproduction purposes.
While many details related to the formation and early evolution of low-mass stars like the Sun are now well understood, the basic scenario that leads to the formation of high-mass stars [2] still remains a mystery. Two possible scenarios for the formation of massive stars are currently being studied. In the first, such stars form by accretion of large amounts of circumstellar material; the infall onto the nascent star varies with time. Another possibility is formation by collision (coalescence) of protostars of intermediate masses, increasing the stellar mass in "jumps".
In their continuing quest to add more pieces to the puzzle and help providing an answer to this fundamental question, a team of European astronomers [1] used a battery of telescopes, mostly at two of the European Southern Observatory's Chilean sites of La Silla and Paranal, to study in unsurpassed detail the Omega nebula.
The Omega nebula, also known as the 17th object in the list of famous French astronomer Charles Messier, i.e. Messier 17 or M 17, is one of the most prominent star forming regions in our Galaxy. It is located at a distance of 7,000 light-years.
M 17 is extremely young - in astronomical terms - as witnessed by the presence of a cluster of high-mass stars that ionise the surrounding hydrogen gas and create a so-called H II region. The total luminosity of these stars exceeds that of our Sun by almost a factor of ten million.
Adjacent to the south-western edge of the H II region, there is a huge cloud of molecular gas which is believed to be a site of ongoing star formation. In order to search for newly forming high-mass stars, Rolf Chini of the Ruhr-Universität Bochum (Germany) and his collaborators have recently investigated the interface between the H II region and the molecular cloud by means of very deep optical and infrared imaging between 0.4 and 2.2 µm.
This was done with ISAAC (at 1.25, 1.65 and 2.2 µm) at the ESO Very Large Telescope (VLT) on Cerro Paranal in September 2002 and with EMMI (at 0.45, 0.55, 0.8 µm) at the ESO New Technology Telescope (NTT), La Silla, in July 2003. The image quality was limited by atmospheric turbulence and varied between 0.4 and 0.8 arcsec. The result of these efforts is shown in PR Photo 15a/04.
Rolf Chini is pleased: "Our measurements are so sensitive that the south-western molecular cloud of M 17 is penetrated and the faint nebular emission of the H II region, which is partly located behind the molecular cloud, could be detected through the dust."
Against the nebular background of the H II region a large opaque silhouette is seen associated with an hourglass shaped reflection nebula. The silhouette disc
ESO PR Photo 15b/04
ESO PR Photo 15b/04
[Preview - JPEG: 400 x 475 pix - 348k] [Normal - JPEG: 800 x 950 pix - 907k]
Caption: PR Photo 15b/04 shows a Ks-band image of the silhouette disc obtained with the NACO Adaptive Optics camera at the 8.2-m VLT YEPUN telescope at Paranal. The displayed field-of-view is outlined in PR Photo 15a/04. White contours delineate the densest part of the disc (inner torus). The visible stars (slightly elongated due to the adaptive optics technique) are embedded within the molecular cloud but are probably unrelated to the disc. The insert shows a deconvolved zoomed version of the central object of about 450 x 240 AU; its major axis is tilted by about 15 degrees against the direction perpendicular to the disc.
ESO PR Video Clip 03/04
ESO PR Video Clip 03/04
[QuickTime Video+Audio; 160x120 pix; 18Mb]
Caption: PR Video Clip 03/04 zooms in towards the disc, starting from the ISAAC image of the full nebula to the NACO image of the silhouette disc. This shows the remarkable power of the set of instruments on the Very Large Telescope.
ESO PR Photo 15c/04
ESO PR Photo 15c/04
[Preview - JPEG: 533 x 400 pix - 80k] [Normal - JPEG: 1067 x 800 pix - 185k]
Caption: PR Photo 15c/04 Position-velocity diagram revealing the rotation of the disc. It is derived from a cut along the major axis of the disc, using the IRAM Plateau de Bure interferometer. For comparison, the theoretically expected position-velocity curve for an edge-on disc around a star of 15 solar masses is shown, the outer part of which (radii larger than about 15,400 AU) is in Keplerian rotation while its inner part is modeled as a rigid rotator.
To obtain a better view of the structure, the team of astronomers turned then to Adaptive Optics imaging using the NAOS-CONICA instrument on the VLT.
Adaptive optics is a "wonder-weapon" in ground-based astronomy, allowing astronomers to "neutralize" the image-smearing turbulence of the terrestrial atmosphere (seen by the unaided eye as the twinkling of stars) so that much sharper images can be obtained. With NAOS-CONICA on the VLT, the astronomers were able to obtain images with a resolution better than one tenth of the "seeing", that is, as what they could observe with ISAAC.
PR Photo 15b/04 shows the high-resolution near-infrared (2.2 µm) image they obtained. It clearly suggests that the morphology of the silhouette resembles a flared disc, seen nearly edge-on.
The disc has a diameter of about 20,000 AU [3] - which is 500 times the distance of the farthest planet in our solar system - and is by far the largest circumstellar disc ever detected.
To study the disc structure and properties, the astronomers then turned to radio astronomy and carried out mole

No affiliations

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Shadow of a Large Disc Casts New Light on the Formation of High Mass Stars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Shadow of a Large Disc Casts New Light on the Formation of High Mass Stars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shadow of a Large Disc Casts New Light on the Formation of High Mass Stars will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1058057

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.