Seismic ray path variations in a 3D global velocity model

Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

13

Scientific paper

A three-dimensional (3D) ray tracing technique is used to investigate ray path variations of P, PcP, pP and PP phases in a global tomographic model with P wave velocity changing in three dimensions and with lateral depth variations of the Moho, 410 and 660km discontinuities. The results show that ray paths in the 3D velocity model deviate considerably from those in the average 1D model. For a PcP wave in Western Pacific to East Asia where the high-velocity (1-2%) Pacific slab is subducting beneath the Eurasian continent, the ray path change amounts to 27km. For a PcP ray in South Pacific where very slow (-2%) velocity anomalies (the Pacific superplume) exist in the whole mantle, the maximum ray path deviation amounts to 77km. Ray paths of other phases (P, pP, PP) are also displaced by tens of kilometers. Changes in travel time are as large as 3.9s. These results suggest that although the maximal velocity anomalies of the global tomographic model are only 1-2%, rays passing through regions with strong lateral heterogeneity (in velocity and/or discontinuity topography) can have significant deviations from those in a 1D model because rays have very long trajectories in the global case. If the blocks or grid nodes adopted for inversion are relatively large (3-5°) and only a low-resolution 3D model is estimated, 1D ray tracing may be feasible. But if fine blocks or grid nodes are used to determine a high-resolution model, 3D ray tracing becomes necessary and important for the global tomography.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Seismic ray path variations in a 3D global velocity model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Seismic ray path variations in a 3D global velocity model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Seismic ray path variations in a 3D global velocity model will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1028985

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.