Physics
Scientific paper
Dec 2004
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004em%26p...95..671h&link_type=abstract
Earth, Moon, and Planets, Volume 95, Issue 1-4, pp. 671-679
Physics
7
Aniostrophy, Diffusion, Diurnal, Electric Field, Ionosphere, Magnetic Field, Meteors
Scientific paper
At altitudes above 93 km in the atmosphere, magnetic and electric fields can affect the modes and rates of non-turbulent diffusion of ionized meteor trails. Anisotropic diffusion is expected. Most theories of anisotropic diffusion, and indeed most experimental studies, have concentrated on the effects of the magnetic field in producing this anisotropy, and different rates of expansion are expected in directions parallel to and perpendicular to the magnetic field lines. In this study, we use interferometric meteor radars to investigate the dependence of the ambipolar diffusion coefficient on viewing direction relative to the magnetic field, and show that the dependence is at best weak when daily averages are used. We then demonstrate that the reason for this effect is that the positions of maximum and minimum diffusion rates varies as a function of time of day, and that daily averaging masks the anisotropy. One possibility to account for the observations is that this strong diurnal variation is a consequence of the electric fields in the upper atmosphere, which are often tidally driven. An alternative possibility is a diurnal cycle in mean meteor entrance speeds. We lean towards the first hypothesis, but both possibilities are discussed. We demonstrate our results with data from several sites, but particularly using the Clovar radar near London, Ontario, Canada.
No associations
LandOfFree
Experimental Radar Studies of Anisotropic Diffusion of High Altitude Meteor Trails does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Experimental Radar Studies of Anisotropic Diffusion of High Altitude Meteor Trails, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Experimental Radar Studies of Anisotropic Diffusion of High Altitude Meteor Trails will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1025093