Introducing the Fission-Fusion Reaction Process: Using a Laser-Accelerated Th Beam to produce Neutron-Rich Nuclei towards the N=126 Waiting Point of the r Process

Physics – Nuclear Physics – Nuclear Experiment

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

13 pages, 6 figures

Scientific paper

We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N=126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th layer, placed beneath a deuterated polyethylene foil, both forming the production target. Th ions laser-accelerated to about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 production target will be accelerated as well to about 7 MeV/u, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10^14 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. In contrast to classical radioactive beam facilities, where intense but low-density radioactive beams are merged with stable targets, the novel fission-fusion process draws on the fusion between neutron-rich, short-lived, light fission fragments both from beam and target. The high ion beam density may lead to a strong collective modification of the stopping power in the target, leading to significant range enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), estimates promise a fusion yield of about 10^3 ions per laser pulse in the mass range of A=180-190, thus enabling to approach the r-process waiting point at N=126.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Introducing the Fission-Fusion Reaction Process: Using a Laser-Accelerated Th Beam to produce Neutron-Rich Nuclei towards the N=126 Waiting Point of the r Process does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Introducing the Fission-Fusion Reaction Process: Using a Laser-Accelerated Th Beam to produce Neutron-Rich Nuclei towards the N=126 Waiting Point of the r Process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Introducing the Fission-Fusion Reaction Process: Using a Laser-Accelerated Th Beam to produce Neutron-Rich Nuclei towards the N=126 Waiting Point of the r Process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-101997

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.