Geospace Environment Modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code

Physics – Plasma Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

142

Magnetospheric Physics: Magnetotail, Magnetospheric Physics: Numerical Modeling, Magnetospheric Physics: Plasma Waves And Instabilities, Space Plasma Physics: Magnetic Reconnection

Scientific paper

The objective of the Geospace Environment Modeling (GEM) magnetic reconnection challenge is to understand the collisionless physics that controls the rate of magnetic reconnection in a two-dimensional configuration. The challenge involves investigating a standard model problem based on a simple Harris sheet configuration by means of a variety of physical models in order to isolate the essential physics. In the present work the challenge problem is modeled using an electromagnetic particle-in-cell code in which full particle dynamics are retained for both electrons and ions and Maxwell's equations are solved without approximation. The timescale for reconnection is of the order of 10Ωi-1 (where Ωi is the ion cyclotron frequency based on the asymptotic field B0), and the corresponding reconnection electric field is (c/vA)Ey/B0~0.24. The diffusion region near the neutral line is observed to develop a multiscale structure based on the electron and ion inertial lengths c/ωpe and c/ωpi. The difference between the ion and electron dynamics in the diffusion region gives rise to in-plane (Hall) currents which produce an out-of-plane By field with a quadrupolar structure. In the diffusion region the magnetic field is no longer frozen-in to the electrons; the inductive Ey field is supported primarily by the off-diagonal electron pressure terms in the generalized Ohm's law. The reconnection rate is found to be insensitive to electron inertia effects and to the presence of a moderate out-of-plane initial field component B0y<~B0. The results are consistent with the theory that the reconnection rate is independent of the mechanism which breaks the frozen-in condition and is controlled by dynamics at length scales much greater than the electron dissipation region.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Geospace Environment Modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Geospace Environment Modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Geospace Environment Modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1008664

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.