Is this a Brown Dwarf or an Exoplanet?

Computer Science – Sound

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Since the discovery in 1995 of the first planet orbiting a normal star other than the Sun, there are now more than 150 candidates of these so-called exoplanets known. Most of them are detected by indirect methods, based either on variations of the radial velocity or the dimming of the star as the planet passes in front of it (see ESO PR 06/03, ESO PR 11/04 and ESO PR 22/04).
Astronomers would, however, prefer to obtain a direct image of an exoplanet, allowing them to better characterize the object's physical nature. This is an exceedingly difficult task, as the planet is generally hidden in the "glare" of its host star.
To partly overcome this problem, astronomers study very young objects. Indeed, sub-stellar objects are much hotter and brighter when young and therefore can be more easily detected than older objects of similar mass.
Based on this approach, it might well be that last year's detection of a feeble speck of light next to the young brown dwarf 2M1207 by an international team of astronomers using the ESO Very Large Telescope (ESO PR 23/04) is the long-sought bona-fide image of an exoplanet. A recent report based on data from the Hubble Space Telescope seems to confirm this result. The even more recent observations made with the Spitzer Space Telescope of the warm infrared glows of two previously detected "hot Jupiter" planets is another interesting result in this context. This wealth of new results, obtained in the time span of a few months, illustrates perfectly the dynamic of this field of research.
Tiny Companion
ESO PR Photo 10a/05
ESO PR Photo 10a/05
The Sub-Stellar Companion to GQ Lupi (NACO/VLT)
[Preview - JPEG: 400 x 429 pix - 22k] [Normal - JPEG: 800 x 875 pix - 132k] [Full Res - JPEG: 1042 x 1116 pix - 241k]
Caption: ESO PR Photo 10a/05 shows the VLT NACO image, taken in the Ks-band, of GQ Lupi. The feeble point of light to the right of the star is the newly found cold companion. It is 250 times fainter than the star itself and it located 0.73 arcsecond west. At the distance of GQ Lupi, this corresponds to a distance of roughly 100 astronomical units. North is up and East is to the left.
Now, a different team of astronomers [1] has possibly made another important breakthrough in this field by finding a tiny companion to a young star. Since several years these scientists have conducted a search for planets and low-mass objects, in particular around stars still in their formation process - so-called T-Tauri stars - using both the direct imaging and the radial velocity techniques. One of the objects on their list is GQ Lupi, a young T-Tauri star, located in the Lupus I (the Wolf) cloud, a region of star formation about 400 or 500 light-years away. The star GQ Lupi is apparently a very young object still surrounded by a disc, with an age between 100,000 and 2 million years.
The astronomers observed GQ Lupi on 25 June 2004 with the adaptive optics instrument NACO attached to Yepun, the fourth 8.2-m Unit Telescope of the Very Large Telescope located on top of Cerro Paranal (Chile). The instrument's adaptive optics (AO) overcomes the distortion induced by atmospheric turbulence, producing extremely sharp near-infrared images.
As ESO PR Photo 10a/05 shows, the series of NACO exposures clearly reveal the presence of the tiny companion, located in the close vicinity of the star. This newly found object is only 0.7 arcsecond away, and would have been overlooked without the use of the adaptive optics capabilities of NACO.
At the distance of GQ Lupi, the separation between the star and its feeble companion is about 100 astronomical units (or 100 times the distance between the Sun and the Earth). This is roughly 2.5 times the distance between Pluto and the Sun.
The companion, called GQ Lupi B or GQ Lupi b [2], is roughly 250 times fainter than GQ Lupi A as seen in this series of image. Further images obtained with NACO in August and September confirmed the presence and the position of this companion.
Moving in the same direction
ESO PR Photo 10b/05
ESO PR Photo 10b/05
Observed Separation between GQ Lupi and its Companion
[Preview - JPEG: 400 x 554 pix - 34k] [Normal - JPEG: 800 x 1107 pix - 136k] [Full Res - JPEG: 1560 x 2158 pix - 319k]
Caption: ESO PR Photo 10a/05 presents the observed separations between the primary star GQ Lupi and its companion, as deduced from the images taken with HST in 1999 (left), Subaru in 2002 (middle) and NACO on the VLT in 2004 (right). All the observed separations are consistent with no changes in separation, implying the two objects move in the same direction (red line). The curved line shows the change in separation expected if the faint object was a background star, due to the proper motion of GQ Lup.
The astronomers then uncovered that the star had been previously observed by the Subaru telescope as well as by the Hubble Space Telescope. They retrieved the corresponding images from the data archives of these facilities for further analysis.
The older images, taken in July 2002 and April 1999, respectively, also showed the presence of the companion, giving the astronomers the possibility of precisely measuring the position of the two objects over a period of several years. This in turn allowed them to determine if the stars move together in the sky - as should be expected if they are gravitationally bound together - or if the smaller object is only a background object, just aligned by chance.
From their measurements, the astronomers found that the separation between the two objects did not change over the five-year period covered by the observations (see ESO PR Photo 10b/05). For the scientists this is a clear proof that both objects are moving in the same direction in the sky. "If the faint object would be a background object", says Ralph Neuhäuser of the University of Jena (Germany) and leader of the team, "we would see a change in separation as GQ Lup would be moving in the sky. From 1999 to 2004, the separation would have changed by 0.15 arcsec, while we are confident that the change is a least 20 times smaller."
Exoplanet or brown dwarf?
ESO PR Photo 10c/05
ESO PR Photo 10c/05
Spectrum of the Companion of GQ Lupi (NACO/VLT)
[Preview - JPEG: 400 x 554 pix - 53k] [Normal - JPEG: 800 x 1108 pix - 200k] [Full Res - JPEG: 1570 x 2175 pix - 518k]
Caption: ESO PR Photo 10c/05 shows the NACO spectrum of the companion of GQ Lupi (thick line, bottom) in the near-infrared (around the Ks-band at 2.2 microns). For comparison, the spectrum of a young M8 brown dwarf (top, in red) and of a L2 brown dwarf (second line, in brown) are shown. Also presented is the spectrum calculated using theoretical models for an object having a temperature of 2,000 degrees. This theoretical spectrum compares well with the observed one.
To further probe the physical nature of the newly discovered object, the astronomers used NACO on the VLT to take a series of spectra. These showed the typical signature of a very cool object, in particular the presence of water and CO bands. Taking into account the infrared colours and the spectral data available, atmospheric model calculations point to a temperature between 1,600 and 2,500 degrees and a radius that is twice as large as Jupiter (see PR Photo 10c/05). According to this, GQ Lupi B is thus a cold and rather small object.
But what is the nature of this faint object? Is it a bona-fide exoplanet or is it a brown dwarf, those "failed" stars that are not massive enough to centrally produce major nuclear reactions? Although the borderline between the two is still a matter of debate, one way to distinguish between the two is by their mass (as this is also done between brown dwarfs and stars): (giant) planets are lighter than about 13 Jupiter-masses (the critical mass needed to ignite deuterium fusion), brown dwarfs are heavier.
What about GQ Lupi b?
Unfortunately, the new observations do not provide a direct estimate of the mass of the object. Thus the astronomers must rely on comparison with theoretical models of such objects. But this is not as easy as it sounds. If, as astronomers generally accept,

No affiliations

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Is this a Brown Dwarf or an Exoplanet? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Is this a Brown Dwarf or an Exoplanet?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Is this a Brown Dwarf or an Exoplanet? will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-971094

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.