Two-dimensional Structure of a Polar Coronal Hole at Solar Minimum: New Semiempirical Methodology for Deriving Plasma Parameters

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

30

Sun: Solar Wind, Sun: Corona, Sun: Uv Radiation

Scientific paper

We develop a new technique to determine the plasma parameters in a polar coronal hole. This method makes use of the line intensities of the H I Lyα λ1215.6 line and of the O VI λλ1031.9, 1037.6 doublet, measured with the Ultraviolet Coronagraph Spectrometer (UVCS) on board the ESA-NASA solar spacecraft Solar and Heliospheric Observatory (SOHO) during 1996 August. The observed intensities are self-consistently reproduced with a two-dimensional semiempirical coronal hole model, for heliocentric distances between 1.4 and 2.6 Rsolar and latitudes between 90° (north pole) and 40°. Electron densities are derived by separating the O VI doublet collisional components from those due to resonant scattering. The calculated electron density radial profiles are consistent with typical polar coronal hole data and show only a moderate increase with latitude decreasing, in regions close to the equatorial streamer. The outflow speeds of protons and O VI ions are determined by means of the Doppler dimming technique. In the Doppler dimming analysis we use kinetic temperatures Tk derived from UVCS observations of the line profiles, whenever available, or we keep Tk as a free parameter if not provided by data. Mass flux conservation along the magnetic field lines is studied adopting a simple analytical model for the geometry of the magnetic flux tubes. Our model shows that protons and O VI ions accelerate outward, but their outflow speed turns out to decrease slowly as latitude decreases. The O VI speed, initially comparable to the speed of protons, exceeds the proton speed beyond ~1.7 Rsolar. Anisotropic O VI kinetic temperatures, T∥ and T⊥, turn out to be necessary to ensure the consistency of the model parameters with mass flux conservation, while the H kinetic temperature distribution is kept isotropic. Results from our model are compared with those from other two-dimensional models recently developed.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Two-dimensional Structure of a Polar Coronal Hole at Solar Minimum: New Semiempirical Methodology for Deriving Plasma Parameters does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Two-dimensional Structure of a Polar Coronal Hole at Solar Minimum: New Semiempirical Methodology for Deriving Plasma Parameters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-dimensional Structure of a Polar Coronal Hole at Solar Minimum: New Semiempirical Methodology for Deriving Plasma Parameters will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-960888

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.