Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002apj...573l.133n&link_type=abstract
The Astrophysical Journal, Volume 573, Issue 2, pp. L133-L136.
Astronomy and Astrophysics
Astronomy
57
Sun: Solar-Terrestrial Relations, Sun: Activity, Sun: Coronal Mass Ejections (Cmes), Sun: Magnetic Fields
Scientific paper
Shearing motions have been frequently used in MHD simulations of coronal mass ejection (CME) initiation but have hardly been reported from observations of CME-producing regions. In this Letter, we investigate whether the bulk of magnetic helicity carried away from the Sun by CMEs comes from helicity injected to the corona by such motions or by emerging magnetic flux. We use photospheric magnetic field observations of NOAA Active Region 9165, which is an ideal candidate for such study because (1) it is the site of both new flux emergence and intense horizontal shearing flows; (2) it shows rapid development and rapid decay, and for a few days it is the site of violent activity; (3) the horizontal motions occur when it is close to disk center, thus minimizing the errors involved in the relevant computations; and (4) observations of a magnetic cloud associated with one of the CMEs linked to the active region are available. The computed helicity change due to horizontal shearing motions is probably the largest ever reported; it amounts to about the total helicity that the active region's differential rotation would have injected within three solar rotations. But the CMEs linked to the active region remove at least a factor of 4-64 more helicity than the helicity injected by horizontal shearing motions. Consequently, the main source of the helicity carried away by the CMEs is the new magnetic flux that emerges twisted from the convective zone. Our study implies that shearing motions, even when they are strong, have little effect in the process of buildup of magnetic free energy that leads to the initiation of CMEs.
Nindos Alexander
Zhang Huazhong
No associations
LandOfFree
Photospheric Motions and Coronal Mass Ejection Productivity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Photospheric Motions and Coronal Mass Ejection Productivity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photospheric Motions and Coronal Mass Ejection Productivity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-960822