Astronomy and Astrophysics – Astrophysics
Scientific paper
Aug 2005
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005eso..pres...20.&link_type=abstract
ESO Press Release, 08/2005
Astronomy and Astrophysics
Astrophysics
Scientific paper
An international team of astronomers from Chile, Europe and North America [1] is announcing the most accurate distance yet measured to a galaxy beyond our Milky Way's close neighbours. The distance was determined using the brightness variation of a type of stars known as "Cepheid variables".
The team used the ISAAC near-infrared camera and spectrometer on ESO's 8.2-m VLT Antu telescope to obtain deep images in the near-infrared of three fields in the spiral galaxy NGC 300. Together these fields contain 16 long-period Cepheids. These stars had previously been discovered by the team in a wide-field imaging survey of this galaxy conducted with the Wide Field Imager (WFI) camera on the ESO/MPG 2.2-m telescope at La Silla.
The spiral galaxy NGC 300 is a beautiful representative of its class, a Milky-Way-like member of the prominent Sculptor group of galaxies in the southern constellation of the same name.
The astronomers derive a distance to NGC 300 of a little above 6 million light-years [2]. "The VLT data have led to accurate period-luminosity relations in the J- and K- bands, allowing us to determine the distance to NGC 300 with an unprecedented uncertainty of only three percent", says Wolfgang Gieren, of the University of Concepcion (Chile) and leader of the team. One of the reasons for this high accuracy was the opportunity to precisely combine the new near-infrared ISAAC data with the previous optical WFI data.
Cepheid variables constitute a key element in the measurement of distances in the Universe. It has been known for many years that the pulsation period of a Cepheid-type star depends on its intrinsic brightness (its "luminosity"). Thus, once its period has been measured, the astronomers can calculate its luminosity. By comparing this to the star's apparent brightness in the sky, they can obtain the distance to the star. This fundamental method has allowed some of the most reliable measurements of distances in the Universe and has been essential for all kinds of astrophysics, from the closest stars to the remotest galaxies.
This first Cepheid distance based on near-infrared imaging with the Very Large Telescope is a milestone in the team's Araucaria Project in which they seek to improve the local calibration of the distance scale with stellar standard candles, including Cepheid variables, by determining precisely how these standard candles depend on a galaxy's properties, such as its content in chemical elements and age.
No affiliations
No associations
LandOfFree
Moving Closer to the Grand Spiral does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Moving Closer to the Grand Spiral, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Moving Closer to the Grand Spiral will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-955322