Mathematics – Quantum Algebra
Scientific paper
1997-10-01
Commun.Math.Phys. 198 (1998) 47-81
Mathematics
Quantum Algebra
35 pages, amslatex, epsfig, many figures; email addresses: bullock@math.gwu.edu, frohman@math.uiowa.edu, kania@diamond.idbsu.e
Scientific paper
10.1007/s002200050471
We construct lattice gauge field theory based on a quantum group on a lattice of dimension 1. Innovations include a coalgebra structure on the connections, and an investigation of connections that are not distinguishable by observables. We prove that when the quantum group is a deformation of a connected algebraic group (over the complex numbers), then the algebra of observables forms a deformation quantization of the ring of characters of the fundamental group of the lattice with respect to the corresponding algebraic group. Finally, we investigate lattice gauge field theory based on quantum SL(2,C), and conclude that the algebra of observables is the Kauffman bracket skein module of a cylinder over a surface associated to the lattice.
Bullock Doug
Frohman Charles
Kania-Bartoszynska Joanna
No associations
LandOfFree
Topological Interpretations of Lattice Gauge Field Theory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Topological Interpretations of Lattice Gauge Field Theory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Topological Interpretations of Lattice Gauge Field Theory will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-92697